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Abstract 

Sustainable intensification is predicated on climate-smart agricultural input adoption. We 
test strategies for promoting the adoption of climate-smart agricultural inputs in Nigeria 
with a private sector firm. We disentangle the effects of price discount promotions (25 
percent discounts) relative to the firm’s standard “business as usual” marketing package. 
We find that the standard marketing package increases the adoption of climate-smart urea 
super granule (USG) fertilizer by 24 percentage points while reducing prilled urea 
utilization by 17 percentage points. Discounts increase adoption of USG by an additional 
eight percentage points, but are not profitable for the input supply firm as a scalable 
marketing strategy. Although treatment reduces nitrogen runoff damages valued between 
USD 43 and 113 per hectare, it did not lead to increased rice yields for farmers. 

Keywords: Technology Adoption, Fertilizer, Climate-Smart, Micro-dosing, Nigeria, Rice 
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1. Introduction

The adoption of climate-smart agricultural technology represents an im-

portant mechanism for achieving sustainable intensification and climate adap-

tation in many low- and middle-income countries—especially in sub-Saharan

Africa (Lipper et al., 2014; Campbell et al., 2014; Clay and Zimmerer, 2020).

Agricultural extension services can effectively transfer information about new

technologies to smallholder farmers and promote adoption on the demand

side (Kondylis et al., 2017; Emerick and Dar, 2021); but there is little rigorous

evidence on the productivity effects attributable to the adoption of climate-

smart agricultural technologies for farmers (Andersson and D’Souza, 2014;

Michler et al., 2019). On the supply side, private sector firms have the poten-

tial to solve a host of challenges that constrain the adoption and effective use

of climate-smart technologies, but more evidence on the profitability of dif-

ferent marketing strategies in promoting technology adoption on the supply

side is needed (Magruder, 2018).

We study the role of the private sector in promoting the adoption of

climate-smart agricultural inputs, reporting results from a randomized con-

trolled trial with a private agricultural input company in Kwara State, Nige-

ria. In the experiment, we test the effectiveness of the standard “business as

usual” marketing used by the company and the additional effect of providing

a discounted price on the adoption of urea super granules (USG) with the

urea deep placement application method.1 In the first treatment (T1), we

1As we discuss in more detail in Section 2, USG is a substitute technology to prilled
urea. While both provide nitrogen, when applied with the deep placement method USG
carries the potential of both private productivity benefits for rice farmers and broader
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randomly assign villages to a treatment group receiving the standard “busi-

ness as usual” marketing which is composed of two key features. The first

feature is an information campaign and a demonstration plot showing how

USG, with urea deep placement, can be an effective intensification technology

that is environmentally sustainable. The second feature is the introduction,

within the village, of a local USG supplier. In the second treatment (T2),

we randomly assign a subset of treatment village farmers to receive a 25

percent discount on the price of USG from the local retailer in addition to

the “business as usual” marketing. Rice farmers in control villages receive no

treatment and are free to use any fertilizer they can purchase.

Our paper is closely related to other randomized controlled trials that

test various approaches to boost the adoption of agricultural technologies.

These approaches include: providing access to credit (Karlan et al., 2014),

providing free or subsidized access to inputs (Beaman et al., 2013), har-

nessing social learning (Beaman and Dillon, 2018; BenYishay and Mobarak,

2019), providing direct training to farmers (Kondylis et al., 2017; Emerick

and Dar, 2021), leveraging behavioral incentives (Duflo et al., 2011), and

improving local availability (Emerick et al., 2016). Our experiment differs in

that, similar to the work of Dar et al. (2021), we directly examine private sec-

tor strategies allowing us to study both (i) the private feasibility of standard

marketing and additional discounts and (ii) the effectiveness of these strate-

gies in improving agricultural productivity and environmental outcomes for

rice farmers.2 This is important as we find that while the standard marketing

environmental benefits.
2The complementary work of Dar et al. (2021) considers an information treatment
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and the additional discount promote the adoption of USG and is associated

with substantial environmental benefits, the discount is likely not privately

profitable for the distributor and the treatment does not lead to increased

rice yields.

We make three contributions. First, we add to the literature on barriers

to the adoption of improved agricultural technologies. Much of this litera-

ture considers the technology adoption choice as the result of an optimization

problem subject to a set of constraints which often lead to market failures

justifying government interventions in agricultural markets (Besley, 1994).3

Our results highlight both the potential and challenge of the private sector’s

role in promoting the sustainable adoption of improved agricultural technolo-

gies. We find that the standard “business as usual” marketing of a private

sector agricultural input company successfully encourages farmers to adopt

a new technology from zero percent at baseline to 28 percent at endline. In

addition, farmers are relatively sensitive to the price of the new technology

and providing a price discount leads to an additional eight percentage points

on the rate of USG adoption. Despite the increase in customers due to the

price discount, we do not find evidence that this marketing strategy would

be profitable for the firm.

provided to private agricultural input suppliers.
3These constraints include: (i) the lack of knowledge about the technology or about how

to use the technology, especially when the technology is new (Besley and Case, 1993; Foster
and Rosenzweig, 1995; Conley and Udry, 2010), (ii) the lack of capital or access to financial
services (Croppenstedt et al., 2003), (iii) behavioral traits such as risk aversion, self-
control, and time inconsistencies (Dercon and Christiaensen, 2011; Duflo et al., 2011), (iv)
transportation and other transaction costs related to imperfections in input and output
markets (Goetz, 1992; Heltberg et al., 2001; Key et al., 2000; Suri, 2011; Liverpool-Tasie
et al., 2017).
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Farmer adoption of USG leads to a substitution from alternative fertil-

izers. The disadoption of alternative production techniques (Neill and Lee,

2001; Simtowe and Mausch, 2019; Razafimahatratra et al., 2021) is important

to document because the environmental benefits associated with the adop-

tion of a new technology often require the disadoption of an “old” substitute

technology. We find that farmers in treatment villages disadopt prilled urea,

a substitute fertilizer to USG, from 50 percent at baseline to 30 percent

at endline. We also find some (albeit noisy) estimates suggesting the dis-

adoption of NPK, a complementary technology to USG (Rakotoson et al.,

2021).

Second, we add to the literature studying the effects of micro-dosing

fertilizer (Ibrahim et al., 2015; Bielders and Gérard, 2015; Saidia et al., 2019;

Sebnie et al., 2020; Tsujimoto et al., 2021) by documenting the environmental

benefits associated with the level of adoption in our field experiment. Urea

fertilizer, in either prilled or granulated form, provides nitrogen to plots.

Providing the optimal amount of nitrogen is important as too little nitrogen

stunts plant growth and too much nitrogen can become toxic to plants.

Additionally, in large part due to its use in agricultural production (Liu et al.,

2010), excess nitrogen can leach from rice plots into adjacent or underground

water sources and lead to eutrophication (Ho et al., 2019). Based on the

rate of both the adoption of USG and the disadoption of prilled urea in our

experiment, we can estimate plausible bounds on the environmental benefits

within our sample. We find that receiving the standard “business as usual”

marketing reduces nitrogen losses by between 1.95 to 3.89 kgs per hectare, an

effect that translates to a reduction of between USD 43 and 86 per hectare
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in annual damage costs. The additional discount increases the reduction

in nitrogen loss to between 2.55 and 5.11 kgs per hectare, which translates

to a reduction of between USD 56 and 113 per hectare in annual damage

costs. Therefore, every dollar spent subsidizing the the adoption of USG is

associated with between USD 6 and 13 in environmental benefits.

Third, we add to the literature studying the productivity effects at-

tributable to the adoption of climate-smart technology adoption (Mazvimavi

and Twomlow, 2009; Michler et al., 2019; Amadu et al., 2020; Berkouwer and

Dean, 2022). Although widely promoted by donor agencies, governments,

and research centers around the world very little research rigorously esti-

mates the effect of adopting climate-smart agricultural technologies on agri-

cultural productivity (Andersson and D’Souza, 2014). Many of the studies

that do exist use observational data and are unable to account for endoge-

nous adoption by farmers (Pannell et al., 2014). Similar to the results of

Michler et al. (2019) who find limited yield effects attributable to the adop-

tion of climate-smart agricultural technologies in Zimbabwe, we find that our

experimental treatment did not lead to increased rice yields in treatment vil-

lages. The finding of limited yield effects contrasts with findings from the

agronomic literature that USG used with the associated deep placement tech-

nology leads to between 15 to 25 percent increases in rice yield (Lupin et al.,

1983; Thomas and Prasad, 1987; Ahmed et al., 2000; Dobermann, 2005; Jena

et al., 2003; Kabir et al., 2009; Islam et al., 2012).4 Additionally, the relative

4This finding is relevant to the literature finding differences in estimated yield gains
between agronomic trials and farmers using the same inputs under real-life conditions
(Dar et al., 2013; Abate et al., 2018; Haile et al., 2017; Laajaj et al., 2020; Paul, 2021).
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price of USG does not lead to reduced input costs or increased farm profit.

We also examine the profitability of the additional discount for the private

fertilizer company and find that the discount is only profitable if their pro-

duction costs are roughly a quarter of the non-discounted selling price. These

findings are important because the success in promoting sustainable intensi-

fication and climate adaptation critically relies on both (i) farmers willingly

adopting climate-smart technologies and (ii) private firms profitably pro-

moting climate-smart technologies. Limited (or negative) yield effects, with

relatively small cost reductions, may discourage widespread adoption of these

technologies despite their environmental benefits.

The rest of this paper is organized as follows. In Section 2, we discuss

the study setting, introduce the “climate-smart” technology, and explain the

implementation of our randomized control trial. In Section 3, we explain our

empirical framework. In Section 4, we discuss our main results on the use

of fertilizer, the effect of our treatment on rice yields, and explore possible

mechanisms that might explain the lack of positive yield effects. Finally,

Section 5 concludes.

2. The Technology and Study Setting

Farmers traditionally broadcast prilled urea on the surface of their plots.

The urea deep placement technology, however, consists of applying USG in

a targeted manner close to the root of the plant and beyond the roots of

weeds. Agronomic research demonstrates the efficiency of using USG with

urea deep placement compared to broadcasting prilled urea in India and

Bangladesh (Lupin et al., 1983; Thomas and Prasad, 1987; Ahmed et al.,
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2000; Jena et al., 2003; Kabir et al., 2009; Islam et al., 2012). In addition,

using USG with urea deep placement requires 25 to 45 percent less nitrogen

than with prilled urea to increase rice paddy yield by one ton (Lupin et al.,

1983). This increased efficiency is due to the fact that only about half of

the nitrogen applied using broadcast methods reaches crops (Dobermann,

2005). Moreover, low nitrogen take up also leads to nitrogen immobilization

in soil organic matter and the evaporation of nitrogen into the environment.

Nitrogen immobilized in the soil can become a pollutant of ground or sur-

face waters, while nitrogen evaporating into the air can contribute to the

accumulation of greenhouse gasses and environmental damage (Chien et al.,

2009). Therefore, USG with urea deep placement may both have important

productivity and environmental benefits.

Despite these productivity and environmental benefits, there are several

challenges associated with USG and the urea deep placement application

method that could limit its adoption and yield benefits among rice farm-

ers in Nigeria. In particular, the recommended practices for the optimal

benefit of USG and urea deep placement include planting on leveled fields,

the consistent availability of water, rigid application timing, and the deep

placement requirement. Our implementation partner, the private fertilizer

company, notes that irrigation can be a high and prohibitive cost for rice

farmers especially during the dry season and that sub-optimal crop manage-

ment practices (e.g., soil preparation, seek quality, timely weeding, etc.) can

limit the yield gains associated with the use of USG. Moreover, a meaningful

delay in sowing or transplanting of the rice plants can lead to a reduction

in rice yields. Consequently, the potential for this technology to revolution-
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ize rice production in Nigeria is unclear and limited by its adoption and

appropriate use by rice farmers.

2.1. The Intervention

The International Fertilizer Development Center (IFDC) is a global leader

in promoting sustainable agricultural solutions aiming to improve soil health,

food security, and livelihoods around the world. In Nigeria, the IFDC has

piloted the use of USG with the urea deep placement technology across sev-

eral locations (Tarfa and Kiger, 2013). Despite encouraging results of these

trials, constraints along the input supply chain for USG limit the widespread

adoption of this technology. In particular, the production of USG requires

a briquetting machine to convert prilled urea to super granules. Although

this machine is relatively expensive and not widely available, in recent years

several private fertilizer companies in Nigeria have developed a production

line for briquetting, packaging, and shipping USG to the market.

In this experiment we partner with one of the private fertilizer companies

producing and distributing USG in Nigeria, and implement a randomized

controlled trial with rice farmers, to explore the role of the private sector in

promoting the adoption USG and the associated urea deep placement appli-

cation. First, villages randomly selected into treatment receive the standard

“business as usual” marketing used by the private fertilizer company when

they enter a new market. This includes an information campaign, a demon-

stration plot, and a guaranteed supply of USG through a local retailer.5

5The information treatment follows a training program developed by the company to
demonstrate how urea deep placement technology works. This includes fertilizer promoter
training, video testimonials of other farmers, and physical demonstrations.
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Second, within treatment villages, a subset of farmers randomly receive a

voucher providing them with a 25 percent discount on their purchase of

USG. This subsidy was financed by grant-supported funds. The company,

received the full selling price for USG during the experiment. All farmers liv-

ing in control villages receive no treatment and are free to use any fertilizer

they can purchase on their own from existing agricultural input suppliers

operating in their village.

2.2. Experimental Design

Our study sites consists of a random sample of 45 villages selected from

two major rice producing Local Government Areas (LGAs) in Kwara State in

north-central Nigeria. Using a listing of all the villages in all the LGAs across

Kwara State, and an existing census of farmers across those villages, we

identified two LGAs with the largest concentrations of rice producers. Then,

within those two LGAs we created a list of 60 villages with at least 40 rice

producers, and used that list as a sample frame for randomly selecting our 45

study villages. The study design employs two stages of randomization. First,

we randomly assign 30 villages to the treatment and 15 villages to control

groups. Second, within treatment villages we randomly select a subset of

farmers to receive a 25 percent discount voucher on their purchase of USG

from a local retailer. The same number of farm households are selected in

the control group, but do not receive a discount voucher.

In February of 2014, during the pre-planting season, we conducted a

baseline survey of 1,170 households in all 45 treatment and control villages.6

6We provide more detail about our data collection effort in Section 3.1.
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After the completion of the baseline survey the treatment implementation

phase began during the later pre-planting and planting seasons. This treat-

ment phase began with the selection and training of village promoters, senior

village promoters, and the establishment of demonstration plots prior to the

planting season.7 One senior village promoter from each local government

provides oversight over the village promoters in their local government and

assists in coordination the implementation of various project activities in the

treatment villages.

The village promoter training includes a video introducing the urea deep

placement application procedure and sessions establishing demonstration

plots. At the end of the training, each village promoter received improved

rice seed, NPK, and USG for use on the demonstration plot. Following

the training, village promoters set up demonstration plots in conjunction

with local farmers. These demonstrations included plots using USG with

urea deep placement and plots using traditional practices to allow for a di-

rect comparison between improved and traditional technology use. At the

beginning of the normal rice growing season (i.e., between April and May

2014), village promoters organized field days with representatives of the pri-

vate fertilizer company and members of the research team. Farmers from

each treatment village were invited to attend a presentation of the technol-

ogy at the demonstration plot, followed by a video projection of the urea

deep placement technology, to increase awareness and understanding of the

7The village promoter is a farmer based in the village who has sufficient social capital
to be able to teach other farmers improved farming practices while simultaneously serving
as the local supplier of the technology.Village promoters are identified by the company to
conduct sales and extension work within the village.
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technology.

The information provided to farmers at the field day include the follow-

ing two elements. First, village promoters provide a motivating statement

about why USG is an important and effective input for rice production. USG

provides nitrogen which rice needs for optimal yield. Importantly, relative

to prilled urea, USG applied with the deep placement approach allows for

a more efficient up take of nitrogen by rice plants and, in agronomic tri-

als, increased rice yields. Second, village promoters demonstrate the urea

deep placement application method. This involves placing a handful of USG

5-6 centimeters deep in the ground between four rice plants. The village

promoters also emphasize a set of recommended practices to achieve the op-

timal benefits associated with the use of USG, including: the need to use the

improved variety of rice seeds, to apply NPK at the time of transplanting

the rice plant, to apply USG one week later, to release irrigation water 2-3

days after USG application, and the need for frequent irrigation. Despite

this emphasis, however, some of these recommended practices (e.g., use of

improved seed, consistent irrigation, etc.) may be financially or practically

infeasible for some rice farmers in this study.

3. Empirical Framework

As discussed above, we implement a randomized controlled trial to study

the effect of “business as usual” marketing and an additional price discount

on the adoption of and yield response to USG with the associated urea deep

placement application method. We specifically use household level data,

which we collect with two rounds of surveys.
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3.1. Data Collection

Figure A.1 summarizes the timeline of the intervention. Between October

and December 2013, we implemented a full census of households in the study

area. The census led to the enumeration of 3,266 households across the 45

villages in the study. We followed this census with baseline data collection,

in February 2014, on a randomly selected representative sample of 1,200

households from the 45 villages. We collected baseline data with a multi-

topic household survey instrument capturing household socio-economic and

demographic characteristics, agricultural production (i.e., practices, inputs,

and labor use, harvest yield), as well as economic well-being indicators (i.e.,

income, expenditures, and food security). We successfully interviewed 1,170

out of the 1,200 households sampled for the baseline data collection. These

1,170 serve as the sample frame for the random assignment of households to

receive coupons within treatment villages.

We collected endline data a year later between April and May 2015.

The endline survey uses a similar survey instrument as the baseline survey,

but excludes several modules containing time invariant information. During

endline data collection, we successfully interviewed 1,112 households. Our

final sample, therefore, includes 1,112 rice producing households.

All households in our data farmed rice, almost exclusively had a male

head of the household, and include about three children and three adults.

At baseline none of the households use USG, half use prilled urea and about

70 percent use NPK. These rates do not differ across treatment status. In

addition, about 80 percent of households use inorganic fertilizer, about 90

percent use herbicide, about 13 percent use some form of irrigation, and
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about 20 percent use pesticide. Again, these rates do not differ across treat-

ment status.8

3.2. Estimation Strategies

We estimate intent-to-treat effects using two specifications. First, we

estimate the following ordinary least squares (OLS) regression specification

with outcomes measuring fertilizer use on both the extensive and intensive

margins:

Yvh,Endline = α+ βT1vh + δT2vh + εvh (1)

Equation (1) is a simple specification using information only from our

endline survey that includes Yvh,Endline, the value of a given outcome variable

for household h in village v measured at endline and the treatment status

of the household, T1vh and T2vh, with the control group serving as the

reference. The coefficients, β and δ, represent intent-to-treat estimates of

each treatment. Finally, εvh is an unobserved error term, which we assume

is independent with treatment status. Since treatment varies at the village

level, we cluster standard errors at the village level.

Second, we estimate the following analysis of covariance (ANCOVA) re-

gression specification to supplement our analysis with outcomes measuring

rice production and yield:

Yvh,Endline = κ+ γT1vh + λT2vh + πYvh,Baseline + µvh (2)

8See Table A.1 in the Supplemental Appendix for more specific summary statistics
about our sample.
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Equation (2) uses information from both our baseline and endline survey.

Similar with equation (1), Yvh,Endline is the value of a given outcome vari-

able measured at endline and T1vh and T2vh are the treatment status of the

household with the control group serving as the reference. The coefficients,

γ and λ, represent intent-to-treat estimates of each treatment. Equation (2),

however, also includes the baseline value of the outcome variable, Yvh,Baseline.

When autocorrelation is relatively low, as it is with the outcomes measuring

rice production and yield, the ANCOVA regression specification has more

statistical power than the standard difference-in-difference regression speci-

fication (McKenzie, 2012). Again, since treatment varies at the village level,

standard errors are clustered at the village level.

4. Results and Discussion

We present four sets of results. First, we report farmer adoption results,

i.e., the intent-to-treat effect of our experimental treatment on the binary

use of specific inorganic fertilizer (i.e., USG, prilled urea, and NPK) at end-

line. From this ITT effect, we estimate bounds of environmental benefits

associated with USG adoption and prilled urea disadoption. Second, we use

the experimental design to infer whether the USG price discount is prof-

itable for the fertilizer company by estimating the intent-to-treat effect on

the quantity used of specific inorganic fertilizer at endline. Third, we esti-

mate the intent-to-treat effects of our experimental treatment on rice yields.

Finally, we investigate possible explanations for null effects we estimated on

rice yields in our previous regressions. This leads us to report treatment-

on-the-treated effects, investigate farmer profits, and test whether farmers
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in the treatment groups adopted the recommended practices associated with

the optimal use of USG.

4.1. Adoption Results

We first estimate the effect of our pooled treatment, i.e., comparing fer-

tilizer use between rice farmers in treatment villages and control villages.

Panel A in Table 1 shows the estimated intent-to-treat effect of the pooled

treatment on the binary use of USG, prilled urea, NPK, and any inorganic

(i.e., USG, prilled urea, or NPK) fertilizer. In column (1) we find that the

pooled treatment increases the use of USG from zero percent at baseline

to 28 percent at endline. In column (2) we find that the pooled treatment

reduces the use of prilled urea by about 20 percentage points, from a use

rate of 50 percent at baseline to about 30 percent at endline. This disadop-

tion of prilled urea in treatment villages is expected because USG is a direct

substitute for prilled urea. In column (3), we find that the pooled treatment

reduces the use of NPK by about 15 percentage points, from a use rate of 70

percent at baseline to about 55 percent at endline. Although the estimated

effect is relatively noisy and not statistically significant at conventional lev-

els, NPK disadoption, a complementary fertilizer to USG, is substantial in

magnitude and does not align with the recommended use of USG. Finally, in

column (4) we find no statistically significant change in the use of any inor-

ganic fertilizer attributable to the pooled treatment. This finding highlights

that although our treatment did increase use of USG it also reduced the use

of both urea and NPK so that there is essentially no noticeable change in

the use of inorganic fertilizer.
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Table 1: The Intent-to-Treat (ITT) Effect on Binary Fertilizer Use

(1) (2) (3) (4)
USG Urea NPK Inorganic

Panel A: Pooled Treatment
Pooled Treatment 0.282*** -0.197* -0.147 -0.0437

(0.0545) (0.0992) (0.108) (0.0835)

Observations 1,112 1,112 1,112 1,112
R-squared 0.088 0.033 0.017 0.002

Panel B: Disaggregated Treatment
T1: No Discount 0.242*** -0.174* -0.166 -0.0505

(0.0476) (0.101) (0.109) (0.0834)
T2: Discount 0.320*** -0.219** -0.129 -0.0371

(0.0654) (0.100) (0.110) (0.0862)

T1 = T2 0.038 0.139 0.146 0.653

Observations 1,112 1,112 1,112 1,112
R-squared 0.094 0.035 0.018 0.002

Baseline mean 0.000 0.50 0.705 0.843
Notes: The outcome variable measures the binary use of fer-
tilizer at endline. In Panel A the coefficients estimate the ITT
effect of the pooled treatment. In Panel B the coefficients es-
timate the ITT effect of each treatment. Tests for equality of
treatment reports the associated p-value. Standard errors clus-
tered at the village level are in parentheses. *** p<0.01, **
p<0.05, * p<0.1
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Next we estimate the effect of the additional 25 percent discount offered

to a random subset of farmers in treatment villages. Panel B in Table 1

reports the intent-to-treat effect of each treatment on the binary use of fer-

tilizer. Comparing the coefficients between T1 without the discount and T2

with the additional discount shows the effect of receiving the additional dis-

count. In column (1) we find that receiving the standard “business as usual”

marketing but not an additional discount increases USG use from zero per-

cent at baseline to 24 percent at endline. Receiving the standard marketing

and the additional discount increases the use rate of USG by eight more per-

centage points to 32 percent at endline. The difference between these two

effect estimates—i.e., the effect of the additional discount—is statistically

significant. In column (2) we find that although the effect of the additional

discount leads to a slightly larger disadoption rate of prilled urea, the dif-

ference between the two treatments is not statistically significant at conven-

tional levels. In column (3) although neither treatment leads to a statistically

significant decline in NPK, the estimated effect remains economically mean-

ingful. Finally, in column (4) we find no statistically significant effect in

the use of any inorganic fertilizer due to our treatment with or without the

additional discount.

The adoption results reported in Table 1 lead to three notable findings.

First, both the standard “business as usual” marketing and the additional

discount inspire the adoption of USG. The objective of marketing by a pri-

vate firm is to promote adoption by providing information, demonstrating

effectiveness, and supplying new technology to potential consumers. We

find that this standard marketing is effective in encouraging the adoption
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of climate-smart inputs. We also find that an additional discount, provided

with standard marketing, encourages even more adoption. Second, when

consumers adopt climate-smart inputs, they also disadopt an “old” substi-

tute technology. This is an expected result as using USG essentially elimi-

nates the need to use prilled urea. In our data, only seven percent of farmers

in treatment villages use both USG and prilled urea at endline. Third, al-

though the estimated effects are not statistically significant at conventional

levels, we also observe some disadoption of NPK. In our data, only 15 per-

cent of farmers in treatment villages use both USG and NPK at endline.

This is an unexpected result as using NPK complements the effectiveness

of USG. This finding highlights a key lesson for the marketing of climate-

smart inputs. To inspire the sustainable adoption, marketing must strike a

balance between selling the potential effectiveness of a new technology while

also clearly explaining the requirements for its optimal use. Without this

balance, potential consumers may either not adopt the new technology or

adopt the technology and not realize the potential benefits and eventually

disadopt.

4.2. Effects on Fertilizer Quantity

We now turn to estimating the intent-to-treat effect of our treatment

on the quantity of fertilizer used by rice farmers. Table 2 reports these re-

sults where comparing the coefficients between T1 and T2 shows the effect

of receiving the additional discount. In column (1) we find that receiving

the standard “business as usual” marketing but not an additional discount

increases the quantity of USG used from zero at baseline to 14 kg at end-
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Table 2: The Intent-to-Treat (ITT) Effect on Fertilizer Use Quantity (kg)

(1) (2) (3) (4)
USG Urea NPK Inorganic

T1: No Discount 13.86*** -56.13 -69.32 -111.6
(3.027) (36.68) (75.60) (110.8)

T2: Discount 21.04*** -64.21* -40.56 -83.73
(5.859) (36.16) (77.52) (112.3)

T1 = T2 0.059 0.278 0.047 0.099

Marginal effects (kg):
E[Yield] for T1 542.23 534.25 527.61 n/a
E[Yield] for T2 567.10 530.84 539.06 n/a
E[Yield] for C 494.24 557.95 555.21 n/a

T1 - C 47.99*** -23.69*** -27.61 n/a
T2 - C 72.86*** -27.10*** -16.16 n/a

Observations 1,112 1,112 1,112 1,112
R-squared 0.059 0.027 0.010 0.013
Baseline mean 00.00 95.09 151.91 247.00
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line. Receiving the standard marketing and an additional discount increases

the quantity of USG used from zero at baseline to 21 kg at endline. Thus,

the additional discount leads to eight kg more USG used and this differ-

ence is statistically significant. In column (2) we continue to find results

indicating the disadoption of prilled urea. Although the estimated effect is

only statistically significant at conventional levels for farmers receiving the

additional discount, the difference between these two effects is not itself sta-

tistically significant. In column (3) we also continue to find results indicating

the disadoption of NPK. Although the estimated effect on both treatments

is not statistically significant at conventional levels, the difference between

these two effects is statistically significant. Farmers receiving the additional

discount reduce NPK less than farmers who do not receive the additional

discount. Finally, in column (4) although we find no statistically significant

change in the quantity used of any inorganic fertilizer for either treatment,

the difference between each treatment is statistically significant. Farmers

receiving the additional discount reduce the quantity used of any inorganic

fertilizer less than farmers not receiving the additional discount.

Environmental Benefits—Urea fertilizer, in either prilled or granulated

form, provides nitrogen to plants. The right amount of nitrogen plays a key

role in plant growth and represents an important part of the natural cycle

of nitrogen moving through the atmosphere, soil, water, plants, and animals

(Brady and Weil, 2010; Geisseler and Scow, 2014). Too little nitrogen and

plants may become stunted, however, too much nitrogen can become toxic

to plants (Britto and Kronzucker, 2002). Excess nitrogen can also leach from

soil into adjacent or underground water sources and lead to eutrophication,
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Table 3: The Intent-to-Treat (ITT) Effect on Environmental Benefits

(1) (2) (3) (4)
N loss/ha N loss/ha Damage cost Damage cost
upper lower upper lower

T1: No Discount -3.890* -1.945* -85.88* -42.94*
(2.109) (1.054) (46.57) (23.28)

T2: Discount -5.106** -2.553** -112.7** -56.37**
(2.070) (1.035) (45.71) (22.86)

T1 = T2 0.086 0.086 0.086 0.086

Observations 1,112 1,112 1,112 1,112
R-squared 0.023 0.023 0.023 0.023
Baseline mean 8.34 4.17 184.15 92.08
Notes: The outcome variables measure plausible bounds on indicators
of nitrogen loss per hectare of rice cultivated and estimated damage
costs associated with nitrogen leaching. The coefficients estimate the
ITT effect of each treatment. Tests for equality of treatment reports the
associated p-value. Standard errors clustered at the village level are in
parentheses. *** p<0.01, ** p<0.05, * p<0.1

which causes the excessive growth of plants and algae in nearby bodies of

water (Chislock et al., 2013; Ho et al., 2019). Crop production represents is

the largest contributor to alterations in the global nitrogen cycle (Liu et al.,

2010).

The results from Table 2 allow us to estimate plausible bounds on the

environmental benefits associated with the adoption of USG and the dis-

adoption of prilled urea. Agronomic research shows that nitrogen losses

with prilled urea could be as high as 50 percent and the adoption of USG ef-

fectively reduces nitrogen losses to zero (De Datta et al., 1990; Dobermann,

2005; Islam et al., 2018; Sarma, 2021). This implies an upper bound on

nitrogen losses associated with the use of prilled urea. We assume a lower

bound of nitrogen losses associated with prilled urea of 25 percent. We con-
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vert nitrogen losses into a per hectare (ha) measures of rice area cultivated

for each farmer in our data. To quantify the cost of environmental damage

of nitrogen loss, due to leaching of nitrogen through the soil and into the

local water system, we rely on Sobota et al. (2015) who estimate that each

kilogram of excess nitrogen leads to roughly USD 22 (in 2022 dollars) in

environmental damage due to eutrophication and toxic levels of nitrogen in

surrounding soil and water.9

Table 3 presents estimates of plausible bounds of the environmental bene-

fits associated with our experimental treatment, which inspired the adoption

of USG and the disadoption of prilled urea. Columns (1) and (2) show the

upper and lower bounds, respectively, of the intent-to-treat effect of our

treatments on nitrogen loss/ha. Columns (3) and (4) show the upper and

lower bounds of the damage costs associated with nitrogen loss. We find

that receiving the standard “business as usual” marketing but not the addi-

tional discount reduced nitrogen losses/ha by between 1.95 to 3.89 kgs. This

translates to a reduction of between USD 43 and 86 per ha in annual damage

costs. The additional discount increases the reduction in nitrogen loss/ha by

over an additional kg. The standard marketing with the additional discount

reduced nitrogen losses/ha by between 2.55 and 5.11 kgs with a value of

USD 56 and 113 per ha in annual damage costs. The value of the 25 percent

discount voucher (in 2022 dollars), based on the reported amount purchased

9It is important to note that the environmental costs of excess nitrogen use can vary
substantially across geographic areas (Keeler et al., 2016). The lack of precise estimates
of the environmental cost of excess nitrogen in Nigeria motivates our bounding approach
where we estimate plausible lower and upper bounds on the true magnitude of environ-
mental benefits associated with endline USG and prilled urea use within our study.
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with the voucher is roughly $10 at baseline. Therefore, in per hectare terms,

the cost benefit ratio of environmental benefits associated with the additional

discount relative to the environmental benefit is between 2.13 and 2.27. For

every dollar spent subsidizing the the adoption of USG is associated with

between USD 6 and 13 in environmental benefits.

Fertilizer Distributor Profitability—The finding that the additional dis-

count increased the quantity of USG used motivates the question: Is the

discount privately profitable for the fertilizer distributor? We can approxi-

mate an answer to this question with the estimated treatment effects from

column (1) of Table 2. Assuming a simple linear profit function of the form

Π = (P − c) × Q, we need three pieces of information. First, we normalize

the un-discounted price of USG (P ) to one. Next, we allow the input cost

of producing USG (c) to vary on an interval from zero to one.10 Finally, we

use the estimated treatment effects on the quantity of USG used (Q) to es-

timate profit with and without the additional discount. As shown in Figure

1, selling USG is only more profitable with the discount when input costs

are lower than 27 percent of the un-discounted output price. This represents

a relatively large markup, and seems unlikely in the case of USG which has

high input costs relative to alternative fertilizers.11

10This represents the relevant range of input costs for a profit maximizing firm, as input
costs are almost certainly greater than zero and input costs greater than one would be
unprofitable.

11If an increase in sales volume (Q) leads to a reduction in average input costs (c) due
to any fixed costs associated with supplying USG to the agricultural input dealer, then
the profit function incorporating the discount in Figure 1 will shift to the right and the
discount may become profitable. However, even with a 10 percent reduction in input costs
associated with the increase in sales volume due to the discount, input costs would still
need to be nearly 50 percent of the un-discounted output price for the discount to be
profitable for the agricultural input dealer.
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Figure 1: Is the Discount Privately Profitable for the Fertilizer Distributor?

Notes: This graph illustrates profit as a function of input costs
with output price normalized to one. The dark line represents
the relationship with no discount. The gray line represents the
relationship with a 25 percent discount. The 25 percent dis-
count is only privately profitable when input costs are roughly
25 percent of the un-discounted output price.
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4.3. Effects on Rice Yield

We now turn to estimating the intent-to-treat effect of our treatment

on rice yield. Table 2 reports the marginal effect of the fertilizer quantity

used on expected rice yield for each treatment group. To calculate these

marginal effects we first estimate a simple production function including

fertilizer quantities as inputs and rice yield as the output.12 We then esti-

mate the quantities of the given fertilizer used on average at endline for each

treatment group.13 In column (1) we see that the average quantity of USG

used in each of the treatment groups is associated with a larger expected

rice yield than that expected from the control group, and these differences

are statistically significant at conventional levels. In columns (2) and (3),

however, we see that the average quantity of urea and NPK used in each of

the treatment groups is associated with a smaller expected rice yield than

that expected from the control group. In column (2) the differences in ex-

pected yield are statistically significant at conventional levels, but in column

(3) the differences are not statistically significant. Taken together, these

marginal effects provide an ambiguous prediction of the effect of our exper-

imental treatment on rice yields. In particular, the substitution away from

prilled urea (a substitute fertilizer) and NPK (a complementary fertilizer)

complicate any expected positive yield effect driven by the adoption of USG.

12This simple production function includes: the quantity of USG, the quantity of prilled
urea, the quantity of NPK, the quantity of USG ×NPK, the quantity of prilled urea ×
NPK, and the quantity of USG × urea. More sophisticated production functions that
include squared and cubed terms, and the use of LASSO as an estimation approach,
provide qualitatively similar results.

13At endline the control group, on average, uses 0.41 kg of USG, 119.22 kg of prilled
urea, and 170 kg of NPK. The average use of a given fertilizer for each treatment group
adds the coefficients from Table 2 to these endline quantities for the control group.
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Table 4 reports the main productivity results using rice yields as the

outcome variable. Each column represents a different specification with the

same outcome variable. In columns (1) and (2) we estimate the effect of the

pooled treatment on rice yields, with an ANCOVA specification in column

(2). In both columns we are unable to reject a null effect despite an average

effect estimate representing roughly a 15 percent decline in rice yields. In

columns (3) and (4) we estimate the effect of each treatment on rice yields,

with an ANCOVA specification in column (4). Again, in both columns we

are unable to reject a null effect despite average effect estimates on each

treatment representing relative meaningful declines in rice yields relatively

to baseline levels. In addition, the additional discount does not make any

statistical difference in rice yield.14

Given that yield is measured as a ratio of farm production (kg) over area

cultivated (ha), it may be that estimated effects on rice yields are obscured by

measurement error in either the production or land variable. Tables A.2 and

A.3 in the Supplemental Appendix demonstrate, however, that this is not the

case. When disaggregating yield into separate measures of farm production

and area cultivated, we are unable to reject a null effect on both outcomes.

However, in both cases the additional discount reduces production and area

cultivated less and this difference is statistically significant. Finally, in Table

14In the Supplemental Appendix, Figures A.2 and A.3 illustrate the endline distribution
of rice yields between treatment and control villages. Figure A.2 plots histograms of the
distribution of endline rice yield between treatment and control villages. The histograms
are largely overlapping. Figure A.3 tests if there are specific regions within the distribution
of endline rice yields that are statistically different, using the methodology of Goldman
and Kaplan (2018). There is only a relatively narrow range of statistical difference in
endline rice yeilds at the low end of the rice yield distribution.
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Table 4: The Intent-to-Treat (ITT) Effect on Rice Yield (kg/ha)

(1) (2) (3) (4)
Yield Yield Yield Yield

Pooled Treatment -66.70 -70.15
(71.27) (65.84)

T1: No Discount -60.14 -62.45
(73.73) (68.64)

T2: Discount -72.94 -77.49
(72.12) (66.67)

T1 = T2 n/a n/a 0.676 0.628

Observations 1,112 1,112 1,112 1,112
R-squared 0.004 0.023 0.004 0.024
Baseline mean 427.06 427.06 427.06 427.06
ANCOVA? No Yes No Yes
Notes: The outcome variable measures rice yield (kg/ha)
at endline. The coefficients estimate the ITT effect of
each treatment. Tests for equality of treatment reports
the associated p-value. Standard errors clustered at the
village level are in parentheses. *** p<0.01, ** p<0.05,
* p<0.1

A.4 in the Supplemental Appendix we show results that instrument for the

binary use of USG with an indicator of our pooled experimental treatment.

This instrument is relevant, as shown in column (1) of Panel A in Table

1, and is exogenous given the random assignment of our pooled treatment.

Again, despite estimating results with a relatively meaningful magnitude, we

fail to reject a null effect.

These results contrast with the productivity gains associated with USG

and the urea deep placement technology previously reported in the agronomy

literature that finds yield effects ranging between 15 and 25 percent (Kabir

et al., 2009; Islam et al., 2012; Sikder and Xiaoying, 2014; Rahman et al.,

2016; Bhuyan et al., 2016). In addition, these results contrast with the
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observation that the use of USG is associated with higher rice yields than

the use of prilled urea or NPK in our data. Table A.5 in the Supplemental

Appendix shows these associations, which persist even when controlling for

our experimental treatment and baseline measures of rice yield and fertilizer

use. Moreover, as previously discussed and reported in Table 2, the marginal

effect of the average quantity of USG used by farmers in each treatment

group is associated with expected rice yields that are larger than expected

rice yields of farmers in the control group.

4.4. What Explains Null Yield Effects?

Null yield results raise the question: Why did our experimental treatment

lead to adoption of USG but no increase in rice yields? In this sub-section we

explore three possible explanations. First, investigate participation in our in-

tervention and estimate treatment-on-the-treated effects to explore whether

farmers who participated in the intervention (i.e., attended the field day, vis-

ited the demonstration plot, and received the discount voucher) realized any

increase in their rice yields. Second, we investigate whether profit maximiz-

ing behavior of farmers, which may run counter to behavior that maximizes

yields, explains the lack of productivity effects. Third, we explore whether

farmers in the treatment groups also adopt any of the recommended practices

associated with the optimal use of USG.

Intervention Participation—We first examine the effect of our experi-

mental intervention on those who participated in the intervention. Table

5 shows that not every farmer in our sample within each treatment group

participated in our intervention. In particular, between 50 to 60 percent of
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Table 5: Intervention Participation

(1) (2) (3) (4) (5)
Attended Field Day Visit Demonstration Increased Understanding Received Voucher Used Voucher

T1: No Discount 0.519∗∗∗ 0.579∗∗∗ 0.394∗∗∗ 0.130∗∗∗ 0.102∗∗∗

(0.0429) (0.0556) (0.0398) (0.0269) (0.0274)

T2: Discount 0.570∗∗∗ 0.653∗∗∗ 0.458∗∗∗ 0.473∗∗∗ 0.297∗∗∗

(0.0442) (0.0461) (0.0427) (0.0491) (0.0557)
Observations 1112 1112 1112 1112 1112
T1 = T2 0.070 0.0211 0.029 0.00 0.00
Baseline Mean 0.00 0.00 0.00 0.00 0.00
Notes: The outcome variable measures various aspects of our intervention. The coefficients estimate the intent to treat (ITT)
effect of our randomized treatment on each of these measures and assesses intervention take-up. Test for equality of treatment
reports the associated p-value. Standard errors clustered at the village level are in parentheses. *** p<0.01, ** p<0.05, *
p<0.1

the farmers in our sample in treatment villages attended a field day, between

60 and 70 percent visited the demonstration plot, less than half reported an

increased understanding of USG, less than half of farmers who were offered

the discount voucher report receiving the voucher, and less than 30 percent

report using the discount voucher. Although these estimates show that our

experimental treatment did lead some farmers to participate in the inter-

vention, one-sided non-compliance persists. Therefore, the intent-to-treat

effects estimated above may not equal the treatment-on-the-treated effects.

We estimate treatment-on-the-treated effects using an instrumental vari-

ables framework. Our instrument is relevant because farmers in our treat-

ment group did participate in our intervention and excludable because no

farmers in our control group participated in our intervention. Table A.8 in

the Supplemental Appendix reports the treatment-on-the-treated effects on

rice yield. Each column represents a different definition of intervention par-

ticipation (e.g., attending a field day, visiting a demonstration plot, receiving

a discount voucher, or a combination of these three indicators). We again
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find estimates that are relatively large in magnitude—representing roughly

a 25 percent reduction in rice yield—but are not statistically significant at

conventional levels. Therefore, similar to the intent-to-treat estimates re-

ported above, we cannot rule-out a null treatment-on-the-treated effect on

of our experimental treatment on rice yields.15

Farmer Input Costs—Next we examine the possibility that farmers be-

have to maximize profits and this may lead to behavior that does not nec-

essarily maximize rice yields. In particular, it may be that farmers in the

treatment groups aim to reduce their input costs rather than increase their

revenue. Although we do not have complete information on all relevant

farmer input costs, we do have some information about value and quantity

of important inputs such as labor, pesticide, herbicide, and seeds. Table 6

reports these results. Column (1) shows that the purchase value of USG for

farmers in treatment villages is greater than for farmers in control villages.

In addition, the purchase value of USG for farmers within treatment villages

who were offered a discount voucher is greater than for farmers in treatment

villages who were not offered a discount voucher. Columns (2) and (3) show

that, although the differences are not statistically significant, the purchase

value of prilled urea for is about 50 percent less and the purchase value of

NPK is about 30 percent less for farmers in treatment villages relative to

farmers in control villages. Considering the purchase value of all inorganic

15We also show estimates of the treatment-on-the-treated effect on fertilizer adoption,
rice production (kg), and rice area (ha) in Tables A.6, A.7, and A.9 respectively in the
Supplemental Appendix. Again, similar to the intent-to-treat effects, although we find
that the treatment-on-the-treated effect on USG adoption is substantial, we are unable to
rule-out a null treatment-on-the-treated effect on rice production or rice area.
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fertilizer (e.g., USG, prilled urea, and NPK), although the difference is not

statistically significant, column (4) shows that farmers in treatment villages

report about 30 percent less purchase value of all inorganic fertilizer than

farmers in control villages. Noting that these average effects are sufficiently

noisy such that we cannot rule-out a null effect, these average effects repre-

sent a possibly meaningful reduction in inorganic fertilizer costs for farmers

in treatment villages.

Table 6 also reports treatment effects on other variables representing im-

portant input costs. Columns (5) through (8) report effects of each treatment

on the number of days spent on rice production activities. In each of these

columns we are not able to rule out a null effect. Considering each type of

production activity together, in column (8), we find that farmers in treat-

ment villages report between two and 15 fewer production days depending

on whether the farmer was offered a discount voucher. In addition, we exam-

ine treatment effects on the value and quantity of other inputs. In column

(9) we find that the purchase value of chemicals for farmers in treatment

villages is less than for farmers in control villages. Although this effect is

only statistically significant at the 10 percent level, it represents roughly a

23 percent reduction in the purchase value of chemicals. In column (10),

although not statistically significant at conventional levels, we find that the

purchase value of pesticide is roughly 50 percent larger in treatment villages

than in control villages. To the contrary, in column (11), although we cannot

rule out a null effect, we find that the purchase value of herbicide is roughly

14 percent smaller in treatment villages than in control villages. Finally, in

column (12), although the difference is not statistically significant at con-
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Table 6: The Intent-to-Treat (ITT) Effect on Input Costs

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
USG Urea NPK Inorganic Sowing Weeding Harvest Production Chemicals Pesticide Herbicide Imp. Seed

(Naira) (Naira) (Naira) (Naira) (Days) (Days) (Days) (Days) (Naira) (Naira) (Naira) (kg)
T1: No Discount 1726.2∗∗∗ -4576.6 -6721.9 -9572.3 -3.095 -4.749 -7.797 -15.64 -1267.5∗ 446.8 -2172.3 7.804

(387.7) (3263.1) (6760.6) (9973.4) (5.133) (5.833) (7.733) (18.31) (748.6) (319.8) (2256.4) (12.43)

T2: Discount 2576.0∗∗∗ -5156.9 -4356.1 -6937.0 -0.225 3.357 -6.028 -2.896 -872.4 287.5 -977.8 11.45
(703.1) (3215.4) (6821.6) (9984.9) (5.522) (6.178) (7.486) (18.61) (730.1) (298.5) (2246.1) (12.88)

Observations 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112
T1 = T2 0.06 0.38 0.08 0.10 0.35 0.03 0.44 0.11 0.21 0.47 0.16 0.46
Baseline Mean 72.41 9926.90 15032.59 25031.90 30.79 31.12 43.49 105.41 4338.36 656.90 10107.84 23.78
Notes: The outcome variable measures various measures of inputs. The coefficients estimate the intent to treat (ITT) effect of our randomized treatment
on a variety of input cost values or quantities. Test for equality of treatment reports the associated p-value. Standard errors clustered at the village level
are in parentheses. *** p<0.01, ** p<0.05, * p<0.1

ventional levels, farmers in treatment villages use about 40 percent more

improved seed than farmers in control villages.

Taken together the results reported in Table 6 provide an ambiguous

answer to whether farmers in treatment villages are able to reduce their in-

put costs. Although we cannot rule out a null effect of each treatment on

the purchase value of inorganic fertilizer, the number of production days, or

the purchase value of other key input variables, the average effects repre-

sent meaningful effects. The evidence suggests that the average farmer in

a treatment village experienced a reduction in input costs relative to the

average farmer in a control village, although we are not able to statistically

distinguish this possibly large effect from zero.

Recommended Practices—Finally, it is also possible that farmers in treat-

ment villages who adopted USG did not adopt all of the recommended prac-

tices associated with the optimal use of USG. We have already discussed the

observation that farmers in treatment villages disadopt and use less NPK,

a complementary fertilizer that aids in the effectiveness of USG. This is po-

tentially due to the fact that prilled urea and NPK are typically purchased
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as a bundle and so the disadoption of prilled urea led to the disadoption of

NPK for some farmers. In addition, Table 7 shows estimated effects of each

treatment on recommended practices such as irrigation, levelled and har-

rowed plots, and the use of herbicide, pesticide, improved seed, and organic

fertilizer. We fail to reject a null effect for each treatment on each of these

outcomes. In addition, as shown in Table A.10 in the Supplemental Ap-

pendix, based on responses to questions asked only to farmers in treatment

villages who reported using USG at endline, less than one out of every five

of these farmers report applying USG 7-10 days after transplanting, plac-

ing USG between four rice plants, applying USG on wet soil, and keeping

the plot wet after transplanting. Each of these practices are specific recom-

mended practices for the optimal use of USG. Taken together, these results

demonstrate that although the standard “business as usual” marketing and

the additional discount inspired the adoption of USG, this treatment did not

effectively communicate or emphasize the recommended practices necessary

for the optimal productivity effects of using USG and urea deep placement.

This explanation is consistent with previous research on the real-world

productivity effects of USG adoption among rice farmers in Niger State,

Nigeria (Liverpool-Tasie et al., 2015), where the authors find that adherence

to several recommended practices, i.e., the establishment of a nursery, leveled

fields, the consistent availability of water, and a rigid application timing is

associated with higher rice yields among farmers using USG. In the present

study, in Kwara State, Nigeria, despite finding relatively large adoption rates

of USG, we find no evidence that the experimental treatment led to the

adoption of any of these recommended practices.

34



Table 7: Effect of Each Treatment on Recommended Practices

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Irrigation Leveling Harrowing Herbicide Pesticide Improved Seed Nursery Organic Fertilizer

T1: No Discount -0.0264 0.00308 -0.0304 -0.0786 -0.0156 0.00455 0.01342 0.000800
(0.0197) (0.00998) (0.0579) (0.0776) (0.0296) (0.0727) (0.0060) (0.0188)

T2: Discount -0.00575 0.00736 0.00458 -0.0501 -0.0367 -0.00492 0.01563 -0.000385
(0.0207) (0.0114) (0.0587) (0.0765) (0.0275) (0.0766) (0.0072) (0.0187)

T1 = T2 0.044 0.740 0.360 0.345 0.191 0.783 0.880 0.920

Observations 1,112 1,112 1,112 1,112 1,112 1,112 1,112 1,112
R-squared 0.004 0.001 0.001 0.005 0.003 0.000 0.004 0.000
Baseline mean 0.109 0.028 0.127 0.750 0.169 0.312 0.001 0.0162
Notes: Each outcome variable represents a binary variable indicating use of a particular recommended practice measured at
endline. Tests for equality of treatment reports the associated p-value. Standard errors clustered at the village level are in
parentheses. *** p<0.01, ** p<0.05, * p<0.1

5. Conclusion

We conduct a randomized controlled trial with a private agricultural

input company and rice farmers in Kwara State, Nigeria to test strategies

for promoting the adoption of USG with the associated urea deep placement

application method. In the first stage of our experiment, we randomly assign

45 villages to treatment and control groups. The treatment villages receive

the standard “business as usual” marketing of the private agricultural input

distributor. This standard marketing includes an information campaign, a

demonstration plot about urea deep placement, and a guaranteed supply of

USG via a local retailer. In the second stage of our experiment, we randomly

assign a subset of farmers within treatment villages to receive a 25 percent

discount on the price of the USG from the local retailer. The control villages

receive no treatment.

Our experiment leads to four core findings. First, comparing farmers

in treatment villages to farmers in control villages, we find that the pooled
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treatment led to the adoption of USG (the improved technology) and the

disadoption prilled urea (a substitute technology). Second, dis-aggregating

the pooled treatment we find that the additional price discount led to an

additional eight percentage points on the adoption rate of USG. Third, based

on estimates of the effect on the quantity of USG use we find that the discount

is only profitable for the company if their production cost are roughly a

quarter of the non-discounted selling price. Finally, although using USG is

associated with higher rice yields in our data, we are unable to reject a null

effect of either treatment on rice yields.

The lack of effects on rice yield contrasts with the agronomy literature

which finds that USG increases rice yields (Kabir et al., 2009; Islam et al.,

2012; Sikder and Xiaoying, 2014; Rahman et al., 2016; Bhuyan et al., 2016),

and may be due to the observation that farmers who adopted USG did not

also adopt the recommended practices associated with the optimal use of

USG. These results carry implications for both public and private strategies

aiming to promote the adoption of agricultural technologies. Farmers are less

likely to adopt and increase USG use if high profitability does not result from

intial adoption. Firms will scale climate-smart agricultural technologies,

such as USG, when they find it profitable, but the tested price discount,

though increasing customers, does not lead to higher profits per customer

for the firm. While the intervention led to a net environmental impact due

to the adoption of USG and the disadoption of NPK, neither the demand

or supply side of the market has incentive to scale without government or

donor intervention.

More generally, our work contributes to a better understanding of the
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barriers to the adoption of productive and climate-smart agricultural tech-

nologies that can help address the triple challenge of sustainable economic

development to (i) promote agricultural productivity, (ii) produce sufficient

food supply, and (iii) reduce greenhouse gas emissions. We find that though

there are benefits of adopting climate-smart inputs on environmental out-

comes, climate-smart inputs substitute for more harmful inputs, leading to

limited yield effects. This finding of limited yield effects attributable to

the adoption of climate-smart agricultural technologies aligns with emerging

evidence from other contexts in sub-Saharan Africa (Michler et al., 2019),

and suggests that the improved adoption of complementary agronomic prac-

tices along with climate-smart inputs may lead to productivity gains and

improved food supply.
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6. Supplemental Appendix

This supplemental Appendix provides additional tables and figures ref-

erenced in the main manuscript. A list of these additional tables and figures

are as follows:

• Figure A.1 summarizes the timeline of the intervention and data col-

lection associated with this project.

• Table A.1 reports balance of observable baseline variables between

treatment status.

• Figures A.2 and A.3 illustrate the endline distribution of rice yeilds.

• Table A.2 reports estimates of each treatment on rice production (kg)

and Table A.3 reports estimates of each treatment on rice area culti-

vated (ha).

• Table A.4 reports instrumental variable estimates on rice yield (kg/ha),

production (kg), and area cultivated (ha).

• Table A.5 reports the rice yield associated with the use of USG, prilled

urea, and NPK conditional on several observable variables.

• Tables A.6, A.7, and A.9 report treatment-on-the-treated effects on

fertilizer adoption, rice production (kg), and rice area cultivated (ha).

• Table A.10 reports responses from a set of survey questions asked only

to respondents in treatment villages who reported using USG at end-

line.
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Figure A.1: Intervention and Data Collection Timeline
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Table A.1: Balance Table

(1) (2) (3) T-test
Pure control Treatment - No subsidy Treatment + Voucher subsidy Difference

Variable N/[Clusters] Mean/SE N/[Clusters] Mean/SE N/[Clusters] Mean/SE (1)-(2) (1)-(3) (2)-(3)

Dependency ratio 290
[15]

1.103
(0.063)

401
[30]

1.139
(0.051)

421
[30]

1.123
(0.045)

-0.036 -0.019 0.016

Number of adults 290
[15]

3.648
(0.135)

401
[30]

3.529
(0.116)

421
[30]

3.736
(0.072)

0.120 -0.088 -0.208

Number of elderly 290
[15]

0.217
(0.034)

401
[30]

0.207
(0.024)

421
[30]

0.162
(0.026)

0.010 0.056 0.045

Number of children 290
[15]

3.366
(0.204)

401
[30]

3.441
(0.170)

421
[30]

3.544
(0.171)

-0.076 -0.178 -0.103

HH size 290
[15]

7.231
(0.269)

401
[30]

7.180
(0.212)

421
[30]

7.442
(0.185)

0.051 -0.211 -0.262

Male (0/1) HH head 290
[15]

0.990
(0.008)

401
[30]

1.000
(0.000)

421
[30]

0.995
(0.005)

-0.010 -0.006 0.005

Formal education (0/1) HH head 290
[15]

0.600
(0.034)

401
[30]

0.551
(0.029)

421
[30]

0.584
(0.039)

0.049 0.016 -0.033

Improved rice variety (0/1) 290
[15]

0.269
(0.062)

401
[30]

0.319
(0.035)

421
[30]

0.335
(0.044)

-0.050 -0.066 -0.016

Total land size 290
[15]

10.132
(1.089)

401
[30]

12.191
(1.019)

421
[30]

11.031
(0.578)

-2.059 -0.899 1.160

Rice yield 290
[15]

409.019
(60.225)

401
[30]

425.326
(36.413)

421
[30]

441.140
(36.647)

-16.307 -32.120 -15.814

Urea (0/1) 290
[15]

0.403
(0.080)

401
[30]

0.384
(0.044)

421
[30]

0.437
(0.039)

0.019 -0.034 -0.053*

NPK (0/1) 290
[15]

0.555
(0.090)

401
[30]

0.561
(0.048)

421
[30]

0.565
(0.048)

-0.006 -0.010 -0.004

Inorganic fertilizer (0/1) 290
[15]

0.641
(0.078)

401
[30]

0.691
(0.042)

421
[30]

0.717
(0.039)

-0.049 -0.076 -0.027

Organic fertilizer (0/1) 290
[15]

0.010
(0.007)

401
[30]

0.012
(0.006)

421
[30]

0.024
(0.007)

-0.002 -0.013 -0.011

Herbicide (0/1) 290
[15]

0.707
(0.059)

401
[30]

0.758
(0.042)

421
[30]

0.772
(0.042)

-0.051 -0.065 -0.014

Chemicals (0/1) 290
[15]

0.159
(0.060)

401
[30]

0.160
(0.022)

421
[30]

0.185
(0.028)

-0.001 -0.027 -0.026

Weeding (0/1) 290
[15]

0.641
(0.058)

401
[30]

0.668
(0.039)

421
[30]

0.691
(0.036)

-0.027 -0.050 -0.023

Notes: The value displayed for t-tests are the differences in the means across the groups. Standard errors are clustered at the village level. ***, **, and * indicate
significance at the 1, 5, and 10 percent critical level.
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Figure A.2: Endline Rice Yield Distributions

Notes: This figure plots a histogram of endline rice yields between treatment villages
and control villages. The histogram shows the frequency of rice yield values and shows a
skewed distribution for both groups.
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Figure A.3: Empirical CDF of Endline Rice Yield

Notes: This figure plots the empirical CDF of endline rice yield between treatment and
control villages. The figure also shows the range at which these two distributions are
statistically different from each other, using the methodology of Goldman and Kaplan
(2018). These results show a relatively narrow range of statistical difference in endline
rice yields at a 10 percent family-wise error rate (FWER) between treatment and control
villages.
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Table A.2: The Intent-to-Treat (ITT) Effect on Rice Production (kg)

(1) (2) (3) (4)
Production Production Production Production

Pooled Treatment -731.1 -714.3
(912.9) (903.7)

T1: No Discount -925.5 -918.2
(906.6) (899.4)

T2: Discount -546.0 -519.6
(931.1) (920.3)

T1 = T2 n/a n/a 0.074 0.063

Observations 1,112 1,112 1,112 1,112
R-squared 0.006 0.013 0.008 0.015
Baseline mean 2,277 2,277 2,277 2,277
ANCOVA? No Yes No Yes
Notes: The outcome variable measures rice production (kg) at endline.
The coefficients estimate the ITT effect of each treatment. Tests for
equality of treatment reports the associated p-value. Standard errors
clustered at the village level are in parentheses. *** p<0.01, ** p<0.05,
* p<0.1
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Table A.3: The Intent-to-Treat (ITT) Effect on Rice Area (ha)

(1) (2) (3) (4)
Area Area Area Area

Pooled Treatment -0.644 -0.747
(1.157) (1.085)

T1: No Discount -1.186 -1.327
(1.101) (1.032)

T2: Discount -0.128 -0.197
(1.262) (1.192)

T1 = T2 n/a n/a 0.047 0.040

Observations 1,112 1,112 1,112 1,112
R-squared 0.001 0.030 0.005 0.035
Baseline mean 5.27 5.27 5.27 5.27
ANCOVA? No Yes No Yes
Notes: The outcome variable measures rice area cultivated
(ha) at endline. The coefficients estimate the ITT effect of
each treatment. Tests for equality of treatment reports the
associated p-value. Standard errors clustered at the village
level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Instrumental Variable Estimates on Rice Productivity

(1) (2) (3) (4)
USG (0/1) Yield (kg/ha) Production (kg) Area (ha)

Pooled Treatment 0.282***
(0.0545)

USG (0/1) -236.5 -2,592 -2.285
(272.9) (3,350) (4.147)

Observations 1,112 1,112 1,112 1,112
Baseline mean 0.000 427.06 2,277 5.27
F-Stat 26.74 26.74 26.74
Notes: The outcome variables are noted in each column. Column (1) reports
the first-stage regression. The coefficients in columns (2) through (4) report the
IV estimates using our experimental treatment as an instrument for the binary
use of USG. Standard errors clustered at the village level are in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
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Table A.5: Fertilizer Use with Associated Rice Yields

(1) (2) (3) (4)
Yield Yield Yield Yield

USG (0/1) 311.3*** 343.7*** 336.9*** 334.9***
(50.86) (52.16) (50.87) (51.98)

Urea (0/1) 196.3*** 185.3*** 179.1*** 178.4***
(37.31) (39.55) (39.46) (39.35)

NPK (0/1) 223.6*** 214.9*** 209.8*** 210.1***
(47.05) (43.85) (42.62) (47.21)

T1: No Discount -75.45 -76.92* -76.04
(46.98) (45.61) (45.32)

T2: Discount -114.5** -116.7** -116.8**
(49.66) (48.44) (48.45)

Baseline Yield 0.0735** 0.0724**
(0.0307) (0.0304)

Baseline Urea (0/1) 20.28
(29.38)

Baseline NPK (0/1) -9.776
(29.58)

USG = Urea 0.026 0.008 0.007 0.008
USG = NPK 0.253 0.084 0.083 0.100

Observations 1,112 1,112 1,112 1,112
R-squared 0.203 0.211 0.216 0.216
Notes: The outcome variable measures rice yield (kg/ha) at end-
line. The coefficients estimate the associated rice yield and should
not be interpreted as causal estimates. Tests for equality of treat-
ment reports the associated p-value. Standard errors clustered at
the village level are in parentheses. *** p<0.01, ** p<0.05, *
p<0.1
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Table A.6: The Treatment-on-the-Treated (TOT) Effect on Binary Fertilizer Use

(1) (2) (3) (4)
USG Urea NPK Inorganic
Panel A

Field Day Attendance 0.517*** -0.361* -0.270 -0.0801
(0.0780) (0.185) (0.203) (0.154)

First-stage F-stat 174.00 174.00 174.00 174.00
R-squared 0.626 0.266 0.368 0.623

Panel B
Demonstration Visit 0.457*** -0.319* -0.239 -0.0708

(0.0725) (0.164) (0.179) (0.136)

First-stage F-stat 162.18 162.18 162.18 162.18
R-squared 0.293 0.276 0.384 0.625

Panel C
Received Voucher 0.924*** -0.645* -0.483 -0.143

(0.108) (0.336) (0.370) (0.276)

First-stage F-stat 73.48 73.48 73.48 73.48
R-squared 0.090 0.176 0.311 0.621

Panel D
Field Day Attendance 0.418*** -0.292* -0.218 -0.0647

+ Demonstration Visit (0.0677) (0.149) (0.163) (0.124)

First-stage F-stat 226.22 226.22 226.22 226.22
R-squared 0.308 0.292 0.393 0.627

Panel E
Field Day Attendance 0.409*** -0.285* -0.214 -0.0633

+ Demonstration Visit (0.0656) (0.146) (0.160) (0.121)
+ Received Voucher

First-stage F-stat 225.06 225.06 225.06 225.06
R-squared 0.311 0.289 0.390 0.626
Observations 1,112 1,112 1,112 1,112
Baseline mean 0.000 0.50 0.705 0.843
Notes: The outcome variable measures the binary use of fertilizer
at endline. The coefficients estimate the treatment-on-the-treated
(TOT) effect by instrumenting for various indicators of treatment
take-up with the village-level randomized treatment assignment.
The first-stage F-stat represents the Sanderson-Windmeijer first-
stage F-statistic of instrument relevance. Standard errors clustered
at the village level are in parentheses. *** p<0.01, ** p<0.05, *
p<0.1
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Table A.7: The Treatment-on-the-Treated (TOT) Effect on Rice Production (kg)

(1) (2) (3) (4) (5)
Production Production Production Production Production

Field Day Attendance -1,341
(1,686)

Demonstration Visit -1,185
(1,494)

Received Voucher -2,394
(3,042)

Field Day Attendance -1,083
+ Demonstration Visit (1,359)

Field Day Attendance -1,060
+ Demonstration Visit (1,332)

+ Received Voucher

Observations 1,112 1,112 1,112 1,112 1,112
R-squared 0.344 0.348 0.315 0.356 0.356
First-stage F-stat 274.00 162.18 74.48 226.22 225.06
Baseline mean 182,130 182,130 182,130 182,130 182,130
Notes: The outcome variable measures rice production (kg) at endline. The coefficients estimate
the treatment-on-the-treated (TOT) effect by instrumenting for various indicators of treatment
take-up with the village-level randomized treatment assignment. The first-stage F-stat repre-
sents the Sanderson-Windmeijer first-stage F-statistic of instrument relevance. Standard errors
clustered at the village level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.8: The Treatment-on-the-Treated (TOT) Effect on Rice Yield (kg/ha)

(1) (2) (3) (4) (5)
Yield Yield Yield Yield Yield

Field Day Attendance -122.4
(133.5)

Demonstration Visit -108.1
(118.0)

Received Voucher -218.4
(242.9)

Field Day Attendance -98.78
+ Demonstration Visit (107.3)

Field Day Attendance -96.69
+ Demonstration Visit (105.1)

+ Received Voucher

Observations 1,112 1,112 1,112 1,112 1,112
R-squared 0.542 0.546 0.529 0.549 0.549
First-stage F-stat 174.00 162.18 73.48 226.22 225.06
Baseline mean 427.06 427.06 427.06 427.06 427.06
Notes: The outcome variable measures rice yield (kg/ha) at endline. The
coefficients estimate the treatment-on-the-treated (TOT) effect by instru-
menting for various indicators of treatment take-up with the village-level
randomized treatment assignment. The first-stage F-stat represents the
Sanderson-Windmeijer first-stage F-statistic of instrument relevance. Stan-
dard errors clustered at the village level are in parentheses. *** p<0.01, **
p<0.05, * p<0.1
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Table A.9: The Treatment-on-the-Treated (TOT) Effect on Rice Area (ha)

(1) (2) (3) (4) (5)
Area Area Area Area Area

Field Day Attendance -1.182
(2.122)

Demonstration Visit -1.045
(1.881)

Received Voucher -2.110
(3.797)

Field Day Attendance -0.954
+ Demonstration Visit (1.714)

Field Day Attendance -0.934
+ Demonstration Visit (1.678)

+ Received Voucher

Observations 1,112 1,112 1,112 1,112 1,112
R-squared 0.303 0.305 0.294 0.307 0.307
First-stage F-stat 274.00 162.18 74.48 226.22 225.06
Baseline mean 5.27 5.27 5.27 5.27 5.27
Notes: The outcome variable measures rice production (kg) at end-
line. The coefficients estimate the treatment-on-the-treated (TOT) ef-
fect by instrumenting for various indicators of treatment take-up with
the village-level randomized treatment assignment. The first-stage F-
stat represents the Sanderson-Windmeijer first-stage F-statistic of in-
strument relevance. Standard errors clustered at the village level are in
parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.10: Responses to Survey Questions for Adopting Rice Farmers

(1) (2) (3)
Mean Std. Dev. Obs.

USG applied 7-10 days after transplanting 0.155 0.363 258
One USG granule between four rice hills 0.174 0.380 258
USG applied on wet soil 0.171 0.377 258
Kept field wet after transplanting 0.171 0.377 258

Notes: This table reports responses to a set of survey questions asked
only to respondents in treatment villages who reported using USG at
endline.

62



   

 
 

ALL IFPRI DISCUSSION PAPERS 
 
 

All discussion papers are available here  
 

They can be downloaded free of charge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE 
www.ifpri.org 
 
IFPRI HEADQUARTERS 
1201 Eye Street, NW 
Washington, DC 20005 USA 
Tel.: +1-202-862-5600 
Fax: +1-202-862-5606 
Email: ifpri@cgiar.org           

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ifpri.org%2Fpublications%2Fsearch%3Ff%255B0%255D%3Drecord_content_record_type%253A88&data=05%7C01%7CG.Hollerich%40cgiar.org%7Ce3b4ee82573f451f6e4d08daa0aedd8d%7C6afa0e00fa1440b78a2e22a7f8c357d5%7C0%7C0%7C637998970136989389%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=wWeOaEE9%2FqCb%2FZq%2BC3ju7dNdzEyreK%2B7QkNn92MyGwU%3D&reserved=0
http://www.ifpri.org/
mailto:ifpri@cgiar.org

	Introduction
	The Technology and Study Setting
	The Intervention
	Experimental Design

	Empirical Framework
	Data Collection
	Estimation Strategies

	Results and Discussion
	Adoption Results
	Effects on Fertilizer Quantity
	Effects on Rice Yield
	What Explains Null Yield Effects?

	Conclusion
	Supplemental Appendix



